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Abstract. Expression refinement semantics are often complex. In par-
ticular, semantics for the relatively simple notion of function application
are often disproportionately complex. Monads are frequently championed
as the ‘right’ tool for structuring the semantics of function application.
In this paper, we consider the interaction between monadic semantics
and refinement semantics. We demonstrate that a monad extended with
a refinement ordering becomes an elegant tool for structuring the se-
mantics of expression refinement. We do not claim that using monads
to structure the semantics of function application is a new idea, nor
do we introduce novel semantic models for non-deterministic languages.
We simply demonstrate that the structure provided by monads ensures
a consistent semantic approach. We illustrate this further by adding a
facility for output to one of our languages.

1 Introduction

Expression refinement allows specifications of values to be transformed into exe-
cutable expressions written in a programming language. Recently Morris [9] has
described weakest precondition semantics for nondeterministic expressions and
an associated specification language. He defines a refinement ordering between
elements of his language based on weakest precondition semantics. Morris also
allows an assignment construct that manipulates state, forging a connection be-
tween expression refinement and the imperative refinement calculus of Back [1],
Morgan [7] and Morris [8].

Earlier work by Schwenke and Robinson [11] defines similar semantics for
a pure expression specification language. Their language provides generalised
expression specifications, while Morris defines only binary choices (although he
uses a generalised choice in an example). Recently, Mahony [6] has formalised,
in Isabelle/HOL [10], a refinement calculus that involves generalised expression
specifications and imperative constructs.
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Wadler [12] argues that monads are the correct class of models for inter-
preting expression languages. As an example, he adds nondeterminism to an
interpreter for a functional language using a monad of lists. We demonstrate
that the expression refinement languages described above can be given monadic
semantics. In fact, for each of these languages we give semantics having the
structure of a monad extended with a refinement ordering. We refer to such a
structure as a refinement monad. The comprehension of this structure in ex-
pression refinement semantics both clarifies and allows a simpler presentation of
the semantics of nondeterministic expression languages. As a demonstration of
this, we use different monads to structure the semantics of a range of languages
that allow different amounts and types of nondeterminism and state manipu-
lation. We find that monads allow the semantics of function application to be
characterised and compared in an elegant manner.

This paper brings together two algebraic concepts that have not been com-
bined before (or at least not in this context). It does not attempt to solve all
of the problems in the field of expression refinement, but merely highlights a
conceptual tool, which may prove valuable in the solution of these problems. We
freely admit that the semantic models presented in this paper are carefully cho-
sen to demonstrate the power of refinement-monadic semantics. We do not claim
that these models are more powerful or that they result in more useful expres-
sion refinement languages than those we consider ‘disproportionately complex’
(for example, the domain theoretic semantic models of Ward [13] or Bunken-
burg [3]). We simply make the modest claim that our understanding of these
semantic models has benefited from structuring them using refinement monads.
We believe that the elegant and concise accounts of these models we are able
to present in this paper are strong confirmation of the power of the refinement
monad concept.

In general, our style of presentation is quite informal, with an emphasis on
conceptual simplicity rather than formal detail. However, much of the work
presented in this paper has been formalised in Isabelle/HOL [6].

2 Monads

A monad is a triple (M , unitM , bindM ), where M is a type constructor and unitM
and bindM have the following types

unitM : α→ M α (1)
bindM : M α→ (α→ M β)→ M β (2)

The unitM function allows a monadic value to be constructed from an ordinary
value by lifting it into its monadic representation. The bindM function takes
a monadic value and applies a function to it, yielding a monadic value. The
function being applied is a monad-valued function, mapping an ordinary value
of one type into a monadic value of another type. Such functions are quite simple
because they do not need to cope with the structure of the monad on their input.
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The unitM and bindM functions must satisfy the following laws:

(unitM c) bindM k = k c (3)
m bindM unitM = m (4)

(m bindM k) bindM h = m bindM (λ a • (k a) bindM h) (5)

This presentation is similar to that of Wadler [12]. He describes interpreters
for functional languages with features such as error handling, state, output,
nondeterminism and call-by-name. In each case, monads are used to define the
language interpreter in a structured way, while maintaining referential trans-
parency. Sect. 5 is based on Wadler’s treatment of nondeterminism, but uses a
more abstract monad.

3 Refinement Monads

In order to better structure the semantics of function application in expression
refinement languages, we suggest the extension of the monad structure with a
partial order

v : M α↔ M α (6)

which determines when one expression is a ‘suitable’ replacement for another.
By suitable, we generally mean either better defined or less nondeterministic. In
this context, the partial order is referred to as the refinement order.

For the moment, we defer the question of how the refinement relation should
interact with the other monadic constructs. Instead we turn our attention to the
relationship between refinement and the monadic model of functions. Since, in
a monadic semantics, functions are modelled as objects of type α → M β, it is
natural to propose a model of refinement on functions that is simply the basic
refinement relation applied pointwise.

f v g ≡ (∀ x • f x v g x ) (7)

This is the last consideration we will give to the application of refinement re-
lated concepts to monadic function models. It is a straightforward exercise to
apply each such concept to the function case through this technique of pointwise
application.

Now we return to the question of the necessary interaction between refine-
ment and bindM . As with most refinement related operators we require simply
that bindM be monotonic in both it arguments. Thus we add two further axioms
to the standard monadic axioms.

m v m ′ ⇒ (∀ f • m bindM f v m ′ bindM f ) (8)
f v f ′ ⇒ (∀ m • m bindM f v m bindM f ′) (9)

We believe the refinement monad to be an ideal tool for comprehending
and structuring the relationship between function application and refinement.
In order to demonstrate its power, we now proceed to present refinement monad
semantics for a series of expression refinement languages of increasing complexity.
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4 An Ordinary Functional Language

The first language that we treat is a simple functional language. This language
is deterministic and has no mutable state. The language contains the following
interesting constructs.

exp ← term (abstract terms)
exp ← exp.exp (function application)
exp ← (λ ident • exp) (functions)

We use a metalanguage that involves logic, sets and λ-calculus to define a se-
mantics for our language. In the concrete language we use an infix dot to indicate
function application, while in the metalanguage we use juxtaposition. The syn-
tactic class term consists of terms of the metalanguage that we allow in our
concrete language for ease of presentation. Such terms might involve integers,
metavariables, Booleans, arithmetic operators and logical operators. Note that
we have omitted many common constructs such as alternation and lists because
we wish to focus on function application.

We define semantics for our concrete language via a simple mapping into
our metalanguage. The simple functional language, is conceptually a subset of
the metalanguage, so the mapping is quite trivial. We complicate things a little
by using the identity refinement monad Id in our semantics, but this serves to
introduce the monadic approach for modelling function abstractions and applica-
tion; providing the essential structure on which the semantics of every expression
language should be based.

Id α = α (10)
unitId c = c (11)

e bindId f = f e (12)
e v e ′ ≡ e = e ′ (13)

The identity monad is a bit of syntactic sugar for nothing, where bindId performs
function application. This is evident in the definition of refinement, which is
simply equality of meanings.

The meaning of metalanguage terms and function application are defined
using unitId and bindId respectively. The meaning of function abstractions is
determined by interpreting their bodies.

[[c]] = unitId c (14)
[[f .e]] = [[e]] bindId [[f ]] (15)

[[ (λ x • e(x ))]] = (λ x • [[e(x )]]) (16)

In the remaining sections we use more interesting refinement monads to capture
the semantics of function application, but the only change to (14), (15) and (16)
will be the choice of monad. That is, as we introduce languages with additional
constructs and more complex semantics, we will not need to make radical changes
to the form of the semantics of our core language constructs. The changes are
confined to the definitions of unitM and bindM .
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5 An Expression Language with Nondeterminism

We wish to add demonic choice to our simple language. We define the following
two syntactic elements.

exp ← exp u exp (binary demonic choice)
exp ← (u ident | term ) (generalised demonic choice)

The binary demonic choice has two explicit elements available, and selects the
less useful of the two. The generalised demonic choice selects the least desirable
value, represented by an identifier ident , that satisfies a Boolean formula term.
Such terms are not completely trivial because we allow them to refer to met-
alanguage variables, such as the bound variables in function abstractions, but
they cannot contain choices.1

The semantics for function application in our concrete language are defined
using the set refinement monad.

Set α = P α (17)
unitSet c = {c} (18)

s bindSet f = {x | (∃ y • y ∈ s ∧ x ∈ f y)} (19)
e v e ′ ≡ e ⊇ e ′ (20)

Each nondeterministic expression is interpreted as the set of values it can eval-
uate to. The definition of unitM tells us that a metaterm is interpreted as the
singleton set containing it, while that of bindSet takes a set and a set-valued
function as arguments and returns a set-valued result. We define refinement by
mapping concrete expressions into the metalanguage and comparing the result-
ing sets.

The meaning of metalanguage terms, function application and functions are
the same as (14), (15) and (16), differing only in the choice of monad.

Binary and generalised choice are modelled by union and set comprehension
respectively.

[[a u b]] = [[a]] ∪ [[b]] (21)
[[ (u x |P )]] = {x |P } (22)

The set monad semantics for our expression language and refinement is quite
limited. There is only room for demonic choice; angelic choice and undefinedness
can not be treated because the set monad has only a single dimension of choice.

6 A Slightly Different Construction

There is an alternative construction of the model given in Sect. 5. In the style of
Back and von Wright [2], we can model sets using the simple expression-predicate
1 Note that this paper does not to treat choices of functions, which can be handled

via a pointwise lifting of choice to functions.
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refinement monad. Simple expression-predicates make an assertion about a given
value, but can’t reference program variables.

PredSet α = α→ B (23)
unitPredSet c = (λ x • x = c) (24)

p bindPredSet f = (λ x • (∃ y • p y ∧ f y x )) (25)
e v e ′ ≡ (∀ x • e x ⇐ e ′ x ) (26)

Given a value v of type α, we can apply a value p of type PredSet α to v to
determine if v is a member of p, thus function evaluation takes the place of set
membership. Singleton sets constructed via unitPredSet merely check if a given
value is equal to their sole element, while the definition of bindPredSet is similar
to (19). Refinement on simple expression-predicates is defined in a pointwise
manner. It is easy to show that Set α and PredSet α are isomorphic. We introduce
the simple expression-predicate monad because it is easier to generalise it to allow
treatment of angelic nondeterminism, undefinedness and state.

The definitions of the choice constructs are similar to those in Sect. 5.

[[a u b]] = (λ x • [[a]] x ∨ [[b]] x ) (27)
[[ (u x |P )]] = (λ x • P) (28)

7 Adding Angelic Nondeterminism

We extend the above language with binary angelic choice and generalised angelic
choice. We also allow expressions to be augmented with assumptions.

exp ← exp t exp (binary angelic choice)
exp ← (t ident | term ) (generalised angelic choice)
exp ← term >− exp (assumption)

Angelic choice is the dual of demonic choice in that it always makes the most
useful possible selection. The assumption term is a predicate written in the
metalanguage.

In order to model expressions with angelic choice we introduce the simple
expression predicate transformer refinement monad.

SPT α = (α→ B)→ B (29)
unitSPT c = (λ φ • φ c) (30)

e bindSPT f = (λ φ • e (λ x • (f x ) φ)) (31)
e v e ′ ≡ (∀ φ • e φ⇒ e ′ φ) (32)

A simple expression-predicate transformer is essentially a set of sets. The outer
set represents angelic choice and the inner sets represent demonic choice. An-
other view of the transformer model is that it is a function which tells us
whether the result of evaluating an expression is certain to satisfy a given prop-
erty; the property is represented by the simple expression-predicate argument
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to the transformer. Simple expression-predicates are referred to as postfunctions
by Schwenke and Robinson [11], because of their role as arguments to simple
expression-predicate transformers. The unitSPT function constructs the trans-
former which returns true for every postfunction satisfied by its argument. The
definition of bindSPT must be considered carefully. Suppose that e is a trans-
former, that f is a transformer-valued function, and that φ is an expression-
predicate postfunction. Suppose further that x is the result of evaluating e. The
bind of f to e ensures φ if and only if e ensures that f x ensures φ. Refinement
is defined in the usual manner for predicate transformers. That is, a refinement
must satisfy every property (postfunction) satisfied by the original expression.
This definition of expression refinement is similar to that of Morris [9].

The definitions for the various choice constructs are unsurprising.

[[a u b]] = (λ φ • [[a]] φ ∧ [[b]] φ) (33)
[[a t b]] = (λ φ • [[a]] φ ∨ [[b]] φ) (34)

[[ (u x |P )]] = (λ φ • (∀ x |P • φ x )) (35)
[[ (t x |P )]] = (λ φ • (∃ x |P • φ x )) (36)

An expression e augmented with an assumption P need only meet its re-
quirement φ if the assumption is satisfied.

[[P >− e]] = (λ φ • P ∧ [[e]] φ) (37)

8 Stateful Predicate Transformer Semantics

We extend the language again, introducing the idea of state.

statement ← term := exp (assignment)
exp ← term ↑ (state reference)

The term on the left-hand side of an assignment statement must be an L-value,
mostly commonly a program variable. An L-value is a term of type

α→ (Σ → Σ)

where Σ represents an explicit state space. Given a value and a state, an L-value
updates the state by storing the value in a given location. The term in a state
reference expression must be an R-value. An R-value is a term of type Σ → α.
Given a state, it returns the value stored in a given location.

The refinement monad of stateful expression predicate transformers is defined
as follows.

PT α = (α→ Σ → B)→ (Σ → B) (38)
unitPT c = (λ φσ • φ c σ) (39)

t bindPT f = (λ φσ • t (λ x • f x φ) σ) (40)
e v e ′ ≡ (∀ φ σ • e φσ ⇒ e ′ φ σ) (41)
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Expression-predicate transformers are applied to expression predicates yielding
state predicates. Expression predicates place an explicit restriction on a value
in the context of the program state. The definitions of unitSP , bindSP and v
have the same structure as their counterparts in Sect. 7, but now instead of the
result being a simple Boolean term it is a state predicate. In order to distinguish
them from the previous ones we include the state arguments, but the state can
be abstracted out of these equations yielding exactly (30), (31) and (32). The
definitions of the existing language constructs have the same form as (33–37),
only the type of φ changes. They differ in the choice of monad and the addition
of the state space.

The definition of the assignment statement is similar to that of Morris [9].
An assignment ensures a postcondition φ if and only if the expression ensures
that updating the state with its value results in a state satisfying φ.

[[lv := e]] = (λ φ • [[e]] (λ y σ • φ (lv y σ))) (42)

A state reference expression ensures a postfunction φ if and only if the value in
the state location satisfies φ.

[[rv ↑]] = (λ φσ • φ (rv σ)) (43)

Interfaces between imperative constructs and expressions can be defined. For
details see Mahony [6]. Since expression predicate transformer are compatible
with ordinary predicate transformer semantics, the semantics given above for
choice constructs and procedures (functions with side-effects) can also be applied
to imperative statements.

9 A Language with Output and Demonic Nondeterminism

All of the above expression refinement semantics are already known in the lit-
erature, we have simply shown that they can all be structured according to the
refinement monad approach. In order to show how easy it is to add novel lan-
guage features when using monads in our semantics, we add an output expression
to the language defined in Sect. 6. We are influenced by Wadler’s addition of
output to an ordinary functional language [12].

exp ← out exp (output)

The Out refinement monad models a set of strings and values.

Out α = (String × α)→ B (44)
unitOut c = (λ (s, a) • s = "" ∧ a = c) (45)

m bindOut k =
(

λ (s, a) •
(
∃ r1, r2, b •

s = r1 ++ r2
m (r1, b) ∧ k b (r2, a)

))
(46)

e v e ′ ≡ (∀ (s, a) • e (s, a)⇐ e ′ (s, a)) (47)
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The type Out α is, of course, just the type PredSet (String×α), so the definition
of demonic choice generalises easily. The definition of unitOut is similar to (24),
but explicitly indicates that metalanguage terms do not produce any output. The
definition of bindOut is like (25), but concatenates the output strings resulting
from evaluating the argument and the function body.

An output expression returns the result of evaluating its expression argument
and concatenates a string representation of the value (generated by the function
showval) to the output generated during the evaluation process. Care must be
taken to cater for the fact that both value and string may be non-deterministic.

[[out e]] = (λ (s, a) • (∃ r • s = (showval a) ++ ? ++ r ∧ e (r , a))) (48)

The string ? is a separator that is inserted between output items.

10 Discussion

We believe refinement monads to be the essence of structuring the semantics
of function application in expression refinement languages. Forcing this struc-
ture into the definitions encourages uniformity between the different semantics
for languages of varying complexity. It may be possible to elegantly combine the
semantics of different language constructs using King and Wadler’s work on com-
bining monads [5]. It may also be possible to combine laws relating to monadic
data structures with our monadic semantics, yielding higher-order refinement
laws.

Adding nondeterministic choices to ‘functional’ languages has the potential
to wreak havoc with referential transparency. One approach to this problem
has been to use ‘underdetermined’ choice operators in order to avoid referen-
tial transparency problems, ensuring that ‘the operator always makes the same
choice’ (Jones [4, p. 77-78]). Our use of bindM to model function application
avoids any such confusion. Choices are sets and refinement is the act of mak-
ing a choice. However, if an expression is refined in two different ways then the
refinements are not necessarily equal.

We are also interested in exploring the possibility of treating predicate trans-
formers at the level of the concrete language. The equivalence between [[e]] φ and
[[ (λ x • φ x ) .e]] can possibly be used to define a wp operator, allowing refinement
to be treated entirely at the concrete level. This is intriguing.
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